Клейна - Гордона уравнение - Definition. Was ist Клейна - Гордона уравнение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Клейна - Гордона уравнение - definition

Уравнение Клейна-Гордона; Уравнение Клейна-Гордона-Фока; Уравнение Клейна — Гордона — Фока; Клейна — Гордона — Фока уравнение; Уравнение Клейна — Фока; Уравнение Шредингера-Гордона

Клейна - Гордона уравнение      

квантовое релятивистское (т. е. удовлетворяющее требованиям относительности теории (См. Относительности теория)) уравнение для частиц со спином нуль. Исторически К. - Г. у. было первым релятивистским уравнением квантовой механики (См. Квантовая механика) для волновой функции частицы ψ; оно было предложено в 1926 Э. Шрёдингером (как релятивистское обобщение Шрёдингера уравнения (См. Шрёдингера уравнение)) и независимо от него шведским физиком О. Клейном (О. Klein), советским физиком В. А. Фоком, немецким физиком В. Гордоном (W. Gordon) и др.

Для свободной частицы К. - Г. у. записывается в виде:

.

Ему соответствует релятивистское соотношение между энергией E и импульсом р частицы: (m - масса частицы, с - скорость света).

Решением уравнения является функция ψ (х, у, z, t), зависящая только от координат (х, у, z) и времени (t). Следовательно, частицы, описываемые этой функцией, не обладают никакими дополнительными внутренними степенями свободы, т. е. действительно являются бесспиновыми (к таким частицам относятся, например, π- и К-мезоны). Однако анализ уравнения показал, что его решение ψ принципиально отличается по своему физическому смыслу от обычной волновой функции как амплитуды вероятности обнаружить частицу в заданном месте пространства в заданный момент времени: ψ (х, у, z, t) не определяется однозначно значением ψ в начальный момент времени (такая однозначная зависимость постулируется в квантовой механике), и, более того, выражение для вероятности данного состояния наряду с положительными значениями может принимать также и лишенные физического смысла отрицательные значения. Поэтому сначала от К. - Г. у. отказались. Однако в 1934 В. Паули и В. Вайскопф нашли правильную интерпретацию этого уравнения в рамках квантовой теории поля (они рассмотрели его как уравнение поля, аналогичное Максвелла уравнениям для электромагнитного поля, и проквантовали его; при этом ψ стало оператором).

М. А. Либерман.

Решётка сексуальной ориентации Клейна         
Решётка сексуальной ориентации Клейна (, KSOG) — предложенная в 1985 году Фрицем Клейном попытка более точного определения и измерения сексуальной ориентации людей путём расширения более ранней шкалы Кинси, которая предоставляет лишь семь градаций от 0 (исключительно гетеросексуальная ориентация) до 6 (исключительно гомосексуальная ориентация).
Уравнение непрерывности         
  • Фрагмент мемуара Д’Аламбера [http://gidropraktikum.narod.ru/equations-of-hydrodynamics.htm#continuity-equation «Essai d’une nouvelle théorie de la résistance des fluides»] (1752, относится к 1749), содержащий уравнение неразрывности для стационарного осесимметрического течения сжимаемой жидкости (<math>\delta</math> — плотность, <math>p</math>, <math>q</math> — компоненты скорости в цилиндрической системе координат)
ЛОКАЛЬНАЯ ФОРМА ЗАКОНОВ СОХРАНЕНИЯ
Уравнение неразрывности; Неразрывности уравнение; Уравнение несжимаемости; Уравнение неразрывности течения
Уравне́ния непреры́вности — (сильная) локальная форма законов сохранения. Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины.

Wikipedia

Уравнение Клейна — Гордона

Уравнение Клейна — Гордона (иногда Клейна — Гордона — Фока, Клейна — Фока, Шрёдингера — Гордона) — релятивистская версия уравнения Шрёдингера:

x 2 ψ + y 2 ψ + z 2 ψ 1 c 2 t 2 ψ m 2 c 2 2 ψ = 0 {\displaystyle \partial _{x}^{2}\psi +\partial _{y}^{2}\psi +\partial _{z}^{2}\psi -{1 \over c^{2}}\partial _{t}^{2}\psi -{m^{2}c^{2} \over \hbar ^{2}}\psi =0} ,

или (с использованием единиц, где = c = 1 {\displaystyle \hbar =c=1} ,   {\displaystyle \square \ }  — оператор Д’Аламбера):

(   m 2 ) ψ = 0 {\displaystyle (\square \ -m^{2})\psi =0} .

Используется для описания быстро движущихся частиц, имеющих массу (массу покоя). Строго применимо к описанию скалярных массивных полей (таких как поле Хиггса). Может быть обобщено для частиц с целым и полуцелым спинами. Кроме прочего, ясно, что уравнение является обобщением волнового уравнения, подходящего для описания безмассовых скалярных и векторных полей.

Механические системы (реальные или воображаемые), описывающиеся уравнением Клейна — Гордона — Фока, могут быть простыми модификациями систем, описывающихся волновым уравнением, например:

  • в одномерном случае — натянутая тяжёлая нить, лежащая (приклеенная) на упругой (гуковской) подкладке.
  • макроскопически изотропный кристалл, каждый атом которого находится, кроме связи с соседними атомами, ещё и в фиксированной в пространстве квадратичной потенциальной яме.
  • более реалистично, если говорить о реальных кристаллах, рассмотреть моды поперечных колебаний, при которых, например, соседние слои атомов колеблются в противофазе: такие моды (в линейном приближении) будут подчиняться двумерному уравнению Клейна — Гордона — Фока в координатах, лежащих в плоскости слоёв.

Уравнение, в котором последний («массовый») член имеет знак, противоположный обычному, описывает в теоретической физике тахион. Такой вариант уравнения также допускает простую механическую реализацию.

Уравнение Клейна — Гордона — Фока для свободной частицы (которое и приведено выше) имеет простое решение в виде синусоидальных плоских волн.

Положив пространственные производные нулю (что в квантовой механике соответствует нулевому импульсу частицы), мы имеем для обычного уравнения Клейна — Гордона — Фока гармонический осциллятор с частотой ± m c 2 / {\displaystyle \pm mc^{2}/\hbar } , что соответствует ненулевой энергии покоя, определяемой массой m {\displaystyle m} частицы. Тахионный же вариант уравнения в этом случае неустойчив, а решение его включает в общем случае неограниченно возрастающую экспоненту.